ÌâÄ¿ÄÚÈÝ
13£®Ä³Ð£¶ÔÊýѧ¡¢ÎïÀíÁ½¿Æ½øÐÐѧҵˮƽ¿¼Ç°¸¨µ¼£¬¸¨µ¼ºó½øÐвâÊÔ£¬°´³É¼¨£¨Âú·Ö100·Ö£©»®·ÖΪºÏ¸ñ£¨³É¼¨´óÓÚ»òµÈÓÚ70·Ö£©ºÍ²»ºÏ¸ñ£¨³É¼¨Ð¡ÓÚ70·Ö£©£®ÏÖËæ»ú³éÈ¡Á½¿Æ¸÷100ÃûѧÉúµÄ³É¼¨Í³¼ÆÈçÏ£º³É¼¨£¨µ¥Î»£º·Ö£© | [50£¬60£© | [60£¬70£© | [70£¬80£© | [80£¬90£© | [90£¬100] |
Êýѧ | 8 | 12 | 40 | 32 | 8 |
ÎïÀí | 7 | 18 | 40 | 29 | 6 |
£¨2£©ÊýѧºÏ¸ñÒ»ÈË¿ÉÒÔÓ®µÃ4Сʱ»úÆ÷È˲Ù×÷ʱ¼ä£¬²»ºÏ¸ñÒ»ÈËÔò¼õÉÙ1Сʱ»úÆ÷È˲Ù×÷
ʱ¼ä£»ÎïÀíºÏ¸ñÒ»ÈË¿ÉÓ®µÃ5Сʱ»úÆ÷È˲Ù×÷ʱ¼ä£¬²»ºÏ¸ñÒ»ÈËÔò¼õÉÙ2Сʱ»úÆ÷È˲Ù×÷ʱ¼ä£®ÔÚ£¨1£©µÄÇ°ÌáÏ£¬
£¨i£©¼ÇXΪÊýѧһÈ˺ÍÎïÀíÒ»ÈËËùÓ®µÃµÄ»úÆ÷È˲Ù×÷ʱ¼ä£¨µ¥Î»£ºÐ¡Ê±£©×ܺͣ¬ÇóËæ»ú±äÁ¿X µÄ·Ö²¼ÁкÍÊýѧÆÚÍû£»
£¨ii£©Ëæ»ú³éÈ¡5ÃûѧÉú£¬ÇóÕâ5ÃûѧÉúÎïÀí¿¼Ç°¸¨µ¼ºó½øÐвâÊÔËùÓ®µÃµÄ»úÆ÷È˲Ù×÷ʱ¼ä²»ÉÙÓÚ14СʱµÄ¸ÅÂÊ£®
·ÖÎö £¨¢ñ£©½áºÏËù¸øµÄ±í¸ñ£¬°ÑÊýѧºÏ¸ñµÄÈËÊý³ýÒÔ100£¬¿ÉµÃÊýѧºÏ¸ñµÄ¸ÅÂÊ£¬°ÑÎïÀíºÏ¸ñµÄÈËÊý³ýÒÔ100£¬¿ÉµÃÎïÀíºÏ¸ñµÄ¸ÅÂÊ£®
£¨¢ò£©£¨¢¡£©Ëæ»ú±äÁ¿XµÄËùÓÐȡֵΪ9£¬4£¬2£¬-3£¬Çó³öÏàÓ¦µÄ¸ÅÂÊ£¬¿ÉµÃËæ»ú±äÁ¿XµÄ·Ö²¼ÁкÍÊýѧÆÚÍû£»
£¨ii£©¸ù¾Ý³é²é5λͬѧÎïÀí³É¼¨ËùÓ®µÃµÄ»úÆ÷È˲Ù×÷ʱ¼ä²»ÉÙÓÚ14¸ö£¬Çó³ö³é²é5λͬѧÎïÀí·ÖÊý£¬ºÏ¸ñÈËÊý£¬¼´¿ÉÇó³é²é5λͬѧÎïÀí³É¼¨ËùÓ®µÃµÄ»úÆ÷È˲Ù×÷ʱ¼ä²»ÉÙÓÚ14¸öµÄ¸ÅÂÊ£®
½â´ð ½â£º£¨¢ñ£©½áºÏËù¸øµÄ±í¸ñ¿ÉµÃÊýѧºÏ¸ñµÄ¸ÅÂÊԼΪ$\frac{40+32+8}{100}=\frac{4}{5}$£¬ÎïÀíºÏ¸ñµÄ¸ÅÂÊԼΪ$\frac{40+29+6}{100}=\frac{3}{4}$£®
£¨¢ò£©£¨¢¡£©Ëæ»ú±äÁ¿XµÄËùÓÐȡֵΪ9£¬4£¬2£¬-3£®ÔòP£¨X=9£©=$\frac{4}{5}¡Á\frac{3}{4}=\frac{3}{5}$£»P£¨X=4£©=$\frac{1}{5}¡Á\frac{3}{4}=\frac{3}{20}$£»P£¨X=2£©=$\frac{4}{5}¡Á\frac{1}{4}=\frac{1}{5}$£»P£¨X=-3£©=$\frac{1}{5}¡Á\frac{1}{4}=\frac{1}{20}$
ËùÒÔ£¬Ëæ»ú±äÁ¿XµÄ·Ö²¼ÁÐΪ£º
X | 9 | 4 | 2 | -3 |
P | $\frac{3}{5}$ | $\frac{3}{20}$ | $\frac{1}{5}$ | $\frac{1}{20}$ |
£¨¢¢£©³é²é5λͬѧÎïÀí·ÖÊý£¬ºÏ¸ñnÈË£¬Ôò²»ºÏ¸ñÓÐ5-nÈË£¬
ÒÀÌâÒ⣬µÃ5n-2£¨5-n£©¡Ý14£¬½âµÃn¡Ý$\frac{24}{7}$ËùÒÔn=4»òn=5£®
Éè¡°³é²é5λͬѧÎïÀí¿¼Ç°¸¨µ¼ºó½øÐеIJâÊÔËùÓ®µÃµÄ»úÆ÷È˲Ù×÷ʱ¼ä²»ÉÙÓÚ14СʱΪʼþA£¬ÔòP£¨A£©=${C}_{5}^{4}£¨\frac{3}{4}£©^{4}¡Á\frac{1}{4}+£¨\frac{3}{4}£©^{5}=\frac{81}{128}$
µãÆÀ ±¾ÌâÖ÷Òª¿¼²éÇóÀëÉ¢ÐÍËæ»ú±äÁ¿µÄ·Ö²¼ÁУ¬¹Åµä¸ÅÂʼ°Æä¼ÆË㹫ʽ£¬ÊôÓÚÖеµÌ⣮
A£® | i¡Ü4£¿ | B£® | i¡Ü5£¿ | C£® | i¡Ü6£¿ | D£® | i¡Ü7£¿ |
A£® | $\frac{1}{{{{£¨{a_1}•{a_n}£©}^n}}}$ | B£® | $\frac{1}{{{{£¨{a_1}•{a_{n+1}}£©}^n}}}$ | C£® | $\frac{1}{{{{£¨{a_1}•{a_n}£©}^{n+1}}}}$ | D£® | $\frac{1}{{{{£¨{a_1}•{a_{n+1}}£©}^{n+1}}}}$ |
A£® | 45 | B£® | 72 | C£® | 60 | D£® | 120 |
¢Ùy=$\sqrt{x}$ ¢Úy=x2 ¢Ûy=2|x| ¢Üy=|lnx|
A£® | 0 | B£® | 1 | C£® | 2 | D£® | 3 |
A£® | -2i | B£® | 2i | C£® | -i | D£® | i |