题目内容

4.设{an}是等比数列,则对任何n∈N*,都有$\frac{1}{{{a_1}{a_2}}}•\frac{1}{{{a_2}{a_3}}}…\frac{1}{{{a_n}{a_{n+1}}}}$=(  )
A.$\frac{1}{{{{({a_1}•{a_n})}^n}}}$B.$\frac{1}{{{{({a_1}•{a_{n+1}})}^n}}}$C.$\frac{1}{{{{({a_1}•{a_n})}^{n+1}}}}$D.$\frac{1}{{{{({a_1}•{a_{n+1}})}^{n+1}}}}$

分析 由等比数列的性质,可得a1an+1=a2an=…=an+1a1,再由累乘法即可得到所求.

解答 解:因为a1an+1=a2an=…=an+1a1
所以${({a_1}a_2^{\;}a_3^{\;}…{a_n}{a_{n+1}})^2}={({a_1}{a_{n+1}})^{n+1}}$,
即${a_1}a_2^2a_3^2…{a_n}^2{a_{n+1}}={({a_1}{a_{n+1}})^n}$,
故 $\frac{1}{{{a_1}{a_2}}}•\frac{1}{{{a_2}{a_3}}}…\frac{1}{{{a_n}{a_{n+1}}}}$=$\frac{1}{{{{({a_1}•{a_{n+1}})}^n}}}$.
故选B.

点评 本题主要考查等比数列的性质、累乘求积法.属于中档题.

练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网