题目内容
如图,已知斜三棱柱ABC-A1B1C1,∠BCA=90°,AC=BC=2,A1在底面ABC上的射影恰为AC的中点D,且BA1⊥AC1.
(1)求证:AC1⊥平面A1BC;
(2)求多面体B1C1ABC的体积.
(1)求证:AC1⊥平面A1BC;
(2)求多面体B1C1ABC的体积.
(1)证明:
A1在底面ABC上的射影在AC上⇒A1D⊥平面ABC⇒A1D⊥BC,∵AC⊥BC,
∴BC⊥平面A1C1CA…(3分)AC1?平面A1C1CA,∴BC⊥AC1,BA1⊥AC1,A1B∩BC=B,∴AC1⊥平面A1BC…(7分)
(2)由(1)可知:A1C⊥AC1⇒ACC1A1是棱形;…(9分)
∵AC=2,点D为中点,AD⊥BC,∴△A1AC为正三角形,∴AD=
…(11分)
∴V多面体B1C1ABC=VA1B1C1-ABC-VA-A1B1C1=
VA1B1C1-ABC=
×
×4×
=
…(13分)
A1在底面ABC上的射影在AC上⇒A1D⊥平面ABC⇒A1D⊥BC,∵AC⊥BC,
∴BC⊥平面A1C1CA…(3分)AC1?平面A1C1CA,∴BC⊥AC1,BA1⊥AC1,A1B∩BC=B,∴AC1⊥平面A1BC…(7分)
(2)由(1)可知:A1C⊥AC1⇒ACC1A1是棱形;…(9分)
∵AC=2,点D为中点,AD⊥BC,∴△A1AC为正三角形,∴AD=
3 |
∴V多面体B1C1ABC=VA1B1C1-ABC-VA-A1B1C1=
2 |
3 |
2 |
3 |
1 |
2 |
3 |
4
| ||
3 |
练习册系列答案
相关题目