题目内容

(文科)如图,正方体ABCD-A1B1C1D1中,M,N,E,F分别是棱A1B1,A1D1,B1C1,C1D1的中点,
求证:平面AMN平面EFDB.
证明:如图所示,连接B1D1,NE
∵M,N,E,F分别是棱A1B1,A1D1,B1C1,C1D1的中点
∴MNB1D1,EFB1D1
∴MNEF
又∵MN?面BDEF,EF?面BDEF
∴MN面BDEF
∵在正方形A1B1C1D1中,M,E,分别是棱A1B1,B1C1的中点
∴NEA1B1且NE=A1B1
又∵A1B1AB且A1B1=AB
∴NEAB且NE=AB
∴四边形ABEN是平行四边形
∴ANBE
又∵AN?面BDEF,BE?面BDEF
∴AN面BDEF
∵AN?面AMN,MN?面AMN,且AN∩MN=N
∴平面AMN平面EFDB
练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网