题目内容
【题目】已知函数,若,则恒成立时的范围是( )
A. B. C. D.
【答案】B
【解析】
利用条件f(1)<0,得到0<a<1.f(x)在R上单调递减,从而将f(x2+tx)<f(x﹣4)转化为x2+tx>x﹣4,研究二次函数得解.
∵f(﹣x)=a﹣x﹣ax=﹣f(x),
∴f(x)是定义域为R的奇函数,
∵f(x)=ax﹣a﹣x(a>0且a≠1),且f(1)<0,
∴,又∵a>0,且a≠1,
∴0<a<1.
∵ax单调递减,a﹣x单调递增,
∴f(x)在R上单调递减.
不等式f(x2+tx)+f(4﹣x)<0化为:f(x2+tx)<f(x﹣4),
∴x2+tx>x﹣4,即x2+(t﹣1)x+4>0恒成立,
∴△=(t﹣1)2﹣16<0,解得:﹣3<t<5.
故答案为:B
练习册系列答案
相关题目