题目内容

【题目】已知正三棱锥P﹣ABC的高PO为h,点D为侧棱PC的中点,PO与BD所成角的余弦值为 ,则正三棱锥P﹣ABC的体积为(
A.
B.
C.
D.

【答案】C
【解析】解:设底面边长为a,连接CO交AB于F,过点D作DE∥PO交CF于E,连接BE,则∠BDE即PO与BD所成角,∴cos∠BDE=
∵PO⊥面ABC,∴DE⊥面ABC,∴△BDE是直角三角形,
∵点D为侧棱PC的中点,∴DE= h,∴BE= h,
在正三角形ABC中,BF= a,EF= CF= a,
在Rt△BEF中,BE2=EF2+BF2
,∴VPABC= = =
故选:C.

【考点精析】利用异面直线及其所成的角对题目进行判断即可得到答案,需要熟知异面直线所成角的求法:1、平移法:在异面直线中的一条直线中选择一特殊点,作另一条的平行线;2、补形法:把空间图形补成熟悉的或完整的几何体,如正方体、平行六面体、长方体等,其目的在于容易发现两条异面直线间的关系.

练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网