题目内容
【题目】某媒体对“男女延迟退休”这一公众关注的问题进行了民意调查,如表是在某单位得到的数据(人数):
(1)能否有90%以上的把握认为对这一问题的看法与性别有关?
赞同 | 反对 | 合计 | |
男 | 5 | 6 | 11 |
女 | 11 | 3 | 14 |
合计 | 16 | 9 | 25 |
(2)从赞同“男女延迟退休”16人中选出3人进行陈 述发言,求事件“男士和女士各至少有1人发言”的概率;
(3)若以这25人的样本数据来估计整个地区的总体数据,现从该地区(人数很多)任选5人,记赞同“男女延迟退休”的人数为X,求X的数学期望.
附:
p(K2≥k) | 0.15 | 0.10 | 0.05 | 0.025 | 0.010 | 0.005 | 0.001 |
k | 2.072 | 2.706 | 3.841 | 5.024 | 6.635 | 7.879 | 10.828 |
K2= .
【答案】
(1)解:K2= ≈2.932>2.706,
由此可知,有90%以上的把握认为对这一问题的看法与性别有关
(2)解:记题设事件为A,则所求概率为P(A)= =
(3)解:根据题意,X~B(5, ),∴E(X)=5× =
【解析】(1)求出K2 , 与临界值比较,即可得出结论;(2)求出基本事件的个数,利用古典概型的概率公式求解即可;(3)根据题意,X~B(5, ),利用公式求出X的数学期望.
【题目】【2017湖南长沙二模】某种产品的质量以其质量指标值衡量,并依据质量指标值划分等极如下表:
质量指标值 | |||
等级 | 三等品 | 二等品 | 一等品 |
从某企业生产的这种产品中抽取200件,检测后得到如下的频率分布直方图:
(1)根据以上抽样调查数据 ,能否认为该企业生产的这种产品符合“一、二等品至少要占全部产品90%”的规定?
(2)在样本中,按产品等极用分层抽样的方法抽取8件,再从这8件产品中随机抽取4件,求抽取的4件产品中,一、二、三等品都有的概率;
(3)该企业为提高产品质量,开展了“质量提升月”活动,活动后再抽样检测,产品质量指标值近似满足,则“质量提升月”活动后的质量指标值的均值比活动前大约提升了多少?