题目内容

【题目】已知函数g(x)满足g(x)=g′(1)ex1﹣g(0)x+ ,且存在实数x0使得不等式2m﹣1≥g(x0)成立,则m的取值范围为(
A.(﹣∞,2]
B.(﹣∞,3]
C.[1,+∞)
D.[0,+∞)

【答案】C
【解析】解:∵g(x)=g′(1)ex1﹣g(0)x+
∴g′(x)=g′(1)ex1﹣g(0)+x,
∴g′(1)=g′(1)﹣g(0)+1,解得:g(0)=1,
g(0)=g′(1)e1 , 解得:g′(1)=e,
∴g(x)=ex﹣x+ x2
∴g′(x)=ex﹣1+x,g″(x)=ex+1>0,
∴g′(x)在R递增,而g′(0)=0,
∴g′(x)<0在(﹣∞,0)恒成立,g′(x)>0在(0,+∞)恒成立,
∴g(x)在(﹣∞,0)递减,在(0,+∞)递增,
∴g(x)min=g(0)=1,
若存在实数x0使得不等式2m﹣1≥g(x0)成立,
只需2m﹣1≥g(x)min=1即可,解得:m≥1,
故选:C.
分别求出g(0),g′(1),求出g(x)的表达式,求出g(x)的导数,得到函数的单调区间,求出g(x)的最小值,问题转化为只需2m﹣1≥g(x)min=1即可,求出m的范围即可.

练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网