题目内容
9.函数f(x)=x3-ax2-bx+a2在x=1处有极值10,则a,b的值为( )A. | $\left\{\begin{array}{l}{a=3}\\{b=-3}\end{array}\right.$或$\left\{\begin{array}{l}{a=-4}\\{b=11}\end{array}\right.$ | B. | $\left\{\begin{array}{l}{a=-4}\\{b=11}\end{array}\right.$ | ||
C. | $\left\{\begin{array}{l}{a=-1}\\{b=5}\end{array}\right.$ | D. | 以上都不对 |
分析 利用函数值,函数的导数列出方程求解即可.
解答 解:函数f(x)=x3-ax2-bx+a2,f′(x)=3x2-2ax-b,
函数f(x)=x3-ax2-bx+a2在x=1处有极值10,
可得:$\left\{\begin{array}{l}3-2a-b=0\\ 1-a-b+{a}^{2}=10\end{array}\right.$,
解得$\left\{\begin{array}{l}{a=3}\\{b=-3}\end{array}\right.$或$\left\{\begin{array}{l}{a=-4}\\{b=11}\end{array}\right.$,
当$\left\{\begin{array}{l}{a=3}\\{b=-3}\end{array}\right.$时,f′(x)=3x2-6x+3≥0恒成立,x=1不是极值点.
当$\left\{\begin{array}{l}{a=-4}\\{b=11}\end{array}\right.$时,f′(x)=3x2+8x-11,△=196>0,导函数有两个解,x=1是极值点.满足题意;
故选:B.
点评 本题考查函数的导数的应用,函数的极值的应用,注意验证,否则容易错选A.
练习册系列答案
相关题目
4.在△ABC中,A=60°,若a,b,c成等比数列,则$\frac{bsinB}{c}$=( )
A. | $\frac{1}{2}$ | B. | $\frac{\sqrt{3}}{2}$ | C. | $\frac{\sqrt{2}}{2}$ | D. | $\frac{\sqrt{6}+\sqrt{2}}{4}$ |