题目内容
【题目】已知函数f(x)=|x﹣a|+2a,且不等式f(x)≤4的解集为{x|﹣1≤x≤3}.
(1)求实数a的值.
(2)若存在实数x0,使f(x0)≤5m2+m﹣f(﹣x0)成立,求实数m的取值范围.
【答案】(1)a=1(2)(﹣∞,]∪[1,+∞)
【解析】
(1)解不等式f(x)≤4,根据其解集,得到的值;(2)将所求不等式转化为5m2+m≥[f(x)+f(﹣x)]min,得到f(x)+f(﹣x)的最小值,从而得到关于的不等式,解出的取值范围.
(1)由f(x)=|x﹣a|+2a≤4,得2a﹣4≤x﹣a≤﹣2a+4,
∴3a﹣4≤x≤﹣a+4,
∵不等式f(x)≤4的解集为{x|﹣1≤x≤3},
∴,∴a=1;
(2)由(1)知f(x)=|x﹣1|+2,
∵存在实数x0,使f(x0)≤5m2+m﹣f(﹣x0)成立,
∴只需5m2+m≥[f(x)+f(﹣x)]min
∵f(x)+f(﹣x)=|x﹣1|+|x+1|+4≥|(x﹣1)﹣(x+1)|+4=6,
当且仅当(x﹣1)(x+1)≤0,即﹣1≤x≤1时取等号,
∴5m2+m≥6,
∴或m≥1,
∴m的取值范围为(﹣∞,]∪[1,+∞).
练习册系列答案
相关题目
【题目】某商品每千克定价10元,商家采取了如下的促销方式:
一次购买量 | 促销方式 |
不多于20千克 | 原价出售 |
多于20千克且不多于40千克 | 不多于20千克部分,原价出售 多于20千克部分,九折出售 |
多于40千克 | 不多于20千克部分,原价出售 多于20千克且不多于40千克部分,九折出售 多于40千克部分八折出售 |
(1)求一次购买(单位:千克),此商品的花费(单位:元)的函数解析式;
(2)某人一次购买此商品400元,问他能购得此商品多少千克?