题目内容
【题目】如图,在边长为1的正方形ABCD中,E为AB的中点,P为以A为圆心,AB为半径的圆弧(在正方形内,包括边界点)上的任意一点,则的取值范围是________; 若向量,则的最小值为_________.
【答案】
【解析】分析:首先根据图形的特征,建立适当的平面直角坐标系,根据正方形的边长,设出点P的坐标,利用终点坐标减去起点坐标,得到对应向量的坐标利用向量数量积坐标公式求得结果;再者就是利用向量相等得到坐标的关系,将其值转化为对应自变量的函数关系,结合自变量的取值范围,求得最小值.
详解:如图,以A为原点,以AB所在直线为x轴,建立平面直角坐标系,结合题意,可知,所以 ,因为,所以,所以,所以的范围是;
根据,可得,即,从而可以求得,
所以,
因为,所以,所以当取得最大值1时,同时取得最小值0,这时取得最小值为,所以的最小值是.
【题目】关于函数,有下列结论:
①的定义域为(-1, 1); ②的值域为(, );
③的图象关于原点成中心对称; ④在其定义域上是减函数;
⑤对的定义城中任意都有.
其中正确的结论序号为__________.
【题目】某企业为打入国际市场,决定从,两种产品中只选择一种进行投资生产.已知投资生产这两种产品的有关数据如下表:(单位:万美元)
项目类别 | 年固定成本 | 每件产品成本 | 每件产品销售价 | 每年最多可生产的件数 |
产品 | 20 | 10 | 200 | |
产品 | 40 | 8 | 18 | 120 |
其中年固定成本与年生产的件数无关,为待定常数,其值由生产产品的原材料价格决定,预计.另外,年销售件产品时需上交万美元的特别关税.假设生产出来的产品都能在当年销售出去.
(1)写出该厂分别投资生产,两种产品的年利润、与生产相应产品的件数之间的函数关系,并指明其定义域;
(2)如何投资才可获得最大年利润?请你做出规划.