题目内容

【题目】在棱长为1的正方体ABCD﹣A1B1C1D1中,AC∩BD=O,E是线段B1C(含端点)上的一动点,则 ①OE⊥BD1
②OE∥面A1C1D;
③三棱锥A1﹣BDE的体积为定值;
④OE与A1C1所成的最大角为90°.
上述命题中正确的个数是(

A.1
B.2
C.3
D.4

【答案】D
【解析】解:①利用BD1⊥平面AB1C,可得OE⊥BD1 , 正确;②利用平面AB1C∥面A1C1D,可得OE∥面A1C1D,正确;③三棱锥A1﹣BDE的体积=三棱锥E﹣A1BD的体积,底面为定值,E到平面的距离A1BD为定值,∴三棱锥A1﹣BDE的体积为定值,正确;④E在B1处O,E与A1C1所成的最大角为90°,正确. 故选D.
【考点精析】根据题目的已知条件,利用棱柱的结构特征的相关知识可以得到问题的答案,需要掌握两底面是对应边平行的全等多边形;侧面、对角面都是平行四边形;侧棱平行且相等;平行于底面的截面是与底面全等的多边形.

练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网