题目内容
已知椭圆
长轴上有一顶点到两个焦点之间的距离分别为:3+2
,3-2
.
(1)求椭圆的方程;
(2)如果直线
与椭圆相交于A,B,若C(-3,0),D(3,0),证明:直线CA与直线BD的交点K必在一条确定的双曲线上;
(3)过点Q(1,0 )作直线l (与x轴不垂直)与椭圆交于M,N两点,与y轴交于点R,若
,求证:
为定值.
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/201408232225275591060.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823222527575344.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823222527575344.png)
(1)求椭圆的方程;
(2)如果直线
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823222527762598.png)
(3)过点Q(1,0 )作直线l (与x轴不垂直)与椭圆交于M,N两点,与y轴交于点R,若
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/201408232225277781007.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823222527793415.png)
(1)
(2)直线CA与直线BD的交点K必在双曲线
上. (3)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823222527825615.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823222527856604.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823222527965584.png)
(1)由题意可知a+c,和a-c,所以可求出a,c的值,进而求出b的值.
(2)依题意可设
,且有
,然后求出CA、DB的方程,解出它们的交点再证明交点坐标是否满足双曲线
的方程即可.
(3) 设直线
的方程为
,再设
、
、
,然后直线方程与椭圆C的方程联立,根据
,可找到
,
,同理
,则![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823222528417849.png)
,然后再利用韦达定理证明
(1)由已知
,得
,
,
所以椭圆方程为
4分
(2)依题意可设
,且有
,
又
,
,
,
将
代入即得![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823222528870936.png)
所以直线CA与直线BD的交点K必在双曲线
上. 9分
(3)依题意,直线
的斜率存在,则设直线
的方程为
,
设
,则
两点坐标满足方程组
,
消去
整理得
,所以
,① 因为
,所以
,
即
,因为l与x轴不垂直,所以
,则
,
又
,同理可得
,所以![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/201408232225292441388.png)
由①式代人上式得![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823222527965584.png)
(2)依题意可设
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823222527996976.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823222528027656.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823222527856604.png)
(3) 设直线
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823222528074250.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823222528090599.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823222528105736.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823222528137680.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823222528152606.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823222528183735.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823222528199656.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823222528371615.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823222528386560.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823222528417849.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/201408232225285111004.png)
(1)由已知
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823222528542941.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823222528573738.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823222528589564.png)
所以椭圆方程为
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823222527825615.png)
(2)依题意可设
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823222527996976.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823222528027656.png)
又
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823222528683946.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823222528698936.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823222528823908.png)
将
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823222528854650.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823222528870936.png)
所以直线CA与直线BD的交点K必在双曲线
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823222527856604.png)
(3)依题意,直线
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823222528074250.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823222528074250.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823222528090599.png)
设
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/201408232225289791150.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823222528995524.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/201408232225290261038.png)
消去
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823222529041311.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823222529057951.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/201408232225290881173.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823222529104717.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/201408232225291191057.png)
即
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/201408232225291511021.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823222529166421.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823222529197584.png)
又
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823222529213680.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823222529229572.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/201408232225292441388.png)
由①式代人上式得
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823222527965584.png)
![](http://thumb.zyjl.cn/images/loading.gif)
练习册系列答案
相关题目