题目内容
若函数有两个不同的零点,且,那么在两个函数值中 ( )
A.只有一个小于1 | B.至少有一个小于1 |
C.都小于1 | D.可能都大于1 |
B
试题分析:由题意可得函数f(x)=(x-x1)(x-x2),∴f(1)=(1-x1)(1-x2)=(x1-1)(x2-1),f(3)=(3-x1)(3-x2),∴f(1)•f(3)=(x1-1)(x2-1)(3-x1)(3-x2)=(x1-1)(3-x1)(x2-1)(3-x2) <。
即 f(1)•f(3)<1.故f(1),f(3)两个函数值中至少有一个小于1。
点评:本题主要考查一元二次方程根的分布与系数的关系,本题解题的关键是把函数表示成两点式,利用基本不等式求出函数的最值,属于中档题.
练习册系列答案
相关题目