题目内容
【题目】如图,四边形是边长为2的菱形,且,平面,,,点是线段上任意一点.
(1)证明:平面平面;
(2)若的最大值是,求三棱锥的体积.
【答案】(1)见证明;(2)
【解析】
(1)推导出AC⊥BM,AC⊥BD,得AC⊥平面BMND,从而可得到证明;(2)由AE=CE和余弦定理可知,当AE最短即AE⊥MN,CE⊥MN时∠AEC最大,取MN中点H,连接H与AC、BD的交点O,知OH⊥平面ABCD,分别以直线,,为轴,轴,轴建立空间直角坐标系,设,利用二面角的平面角为,可求出a,然后利用VM﹣NAC=VM﹣EAC+VN﹣EAC可得结果.
(1)因为平面,则.
又四边形是菱形,则,又,
所以平面,因为AC在平面内,
所以平面平面.
(2)设与的交点为,连结. 因为平面,则,又为的中点,则,由余弦定理得,.当AE最短时∠AEC最大,此时,,,因为AC=2,,OE=. 取MN的中点H,分别以直线,,为轴,轴,轴建立空间直角坐标系,
设,则点, ,,.设平面的法向量,
则,即 ,取,则,
同理求得平面的法向量.
因为是二面角 的平面角,则
,解得或.
由图可知a<OE=,故 (舍去),,
因为,,,
则.
练习册系列答案
相关题目