题目内容

【题目】若函数f(x),g(x)分别是R上的奇函数、偶函数,且满足f(x)﹣g(x)=ex , 则有(
A.f(2)<f(3)<g(0)
B.g(0)<f(3)<f(2)
C.f(2)<g(0)<f(3)
D.g(0)<f(2)<f(3)

【答案】D
【解析】解:用﹣x代换x得:f(﹣x)﹣g(﹣x)=ex , 即f(x)+g(x)=﹣ex
又∵f(x)﹣g(x)=ex
∴解得:
分析选项可得:
对于A:f(2)>0,f(3)>0,g(0)=﹣1,故A错误;
对于B:f(x)单调递增,则f(3)>f(2),故B错误;
对于C:f(2)>0,f(3)>0,g(0)=﹣1,故C错误;
对于D:f(x)单调递增,则f(3)>f(2),且f(3)>f(2)>0,而g(0)=﹣1<0,D正确;
故选D.
因为函数f(x),g(x)分别是R上的奇函数、偶函数,所以f(﹣x)=﹣f(x),g(﹣x)=g(x).
用﹣x代换x得:f(﹣x)﹣g(﹣x)=﹣f(x)﹣g(x)=ex , 又由f(x)﹣g(x)=ex联立方程组,可求出f(x),g(x)的解析式进而得到答案.

练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网