题目内容
【题目】已知数列{an}的前n项和Sn=4n,数列{bn}满足b1=-3,
bn+1=bn+(2n-3)(n∈N*).
(1)求数列{an}的通项公式;
(2)求数列{bn}的通项公式;
(3)若cn=,求数列{cn}的前n项和Tn.
【答案】(1) 当n=1时an=4, 当 n≥2时,an=3×4n-1. (2) bn=n2-4n(n∈N*).(3)Tn=[4+(3n-13)×4n]/3
【解析】试题分析:(1)利用Sn与an的关系求出数列{an}的通项公式;(2)利用累加法求出数列{bn}的通项公式;(3)利用错位相减法求出数列{cn}的前n项和Tn.
试题解析:
解:(1)∵Sn=4n,∴Sn-1=4n-1(n≥2),
∴an=Sn-Sn-1=4n-4n-1=3×4n-1(n≥2).
当n=1时,3×41-1=3≠S1=a1=4,
∴当n=1时an=4, 当 n≥2时,an=3×4n-1.
(2)∵bn+1=bn+(2n-3),
∴b2-b1=-1,b3-b2=1,b4-b3=3,…,bn-bn-1=2n-5(n≥2).
以上各式相加得
bn-b1=-1+1+3+5+…+(2n-5)=(n-1)(n-3)(n≥2).
∵b1=-3,∴bn=n2-4n(n≥2).
又上式对于n=1也成立,
∴bn=n2-4n(n∈N*).
(3)由题意得当n=1时,cn=-12, 当n≥2时,cn=3(n-4)×4n-1.
①当n=1时, Tn=-12
②当n≥2时,Tn=-12+3×(-2)×41+3×(-1)×42+3×1×43+…+3(2n-3)×4n-1,
∴4Tn=-48+3×(-2)×42+3×(-1)×43+3×1×44+…+3(2n-3)×4n.
相减得-3Tn=12+3×42+3×43+…+3×4n-1-3(2n-3)×4n.
∴Tn=(n-4)×4n-(4+42+43+…+4n-1)=[4+(3n-13)×4n]/3
又上式对于n=1也成立,
∴综上Tn=[4+(3n-13)×4n]/3