题目内容
【题目】已知函数(ω>0)的最小正周期为π.
(Ⅰ)求ω的值和f(x)的单调递增区间;
(Ⅱ)若关于x的方程f(x)﹣m=0在区间[0,]上有两个实数解,求实数m的取值范围.
【答案】(Ⅰ),函数的增区间为.(Ⅱ)
【解析】
(Ⅰ)利用三角函数恒等变换化简函数的解析式,再利用正弦函数的周期性、单调性,即可求得结论;
(Ⅱ)由题意,函数的图象和直线在区间上有两个不同的交点,利用正弦函数的定义域和值域,以及正弦函数的图象特征,即可求解的取值范围.
(Ⅰ)由题意,函数
所以函数的最小正周期为,∴,即 .
令,求得,
可得函数的增区间为.
(Ⅱ)在区间上,则,则,
即,
关于x的方程在区间上有两个实数解,
则的图象和直线在区间上有两个不同的交点,
则.
练习册系列答案
相关题目
【题目】某农科所发现,一中作物的年收获量y(单位:kg)与它”相近“作物的株数x具有线性相关关系(所谓两株作物”相近“是指它们的直线距离不超过1m),并分别记录了相近作物的株数为1,2,3,5,6,7时,该作物的年收获量的相关数据如下:
X | 1 | 2 | 3 | 5 | 6 | 7 |
y | 60 | 55 | 53 | 46 | 45 | 41 |
(Ⅰ)求该作物的年收获量y关于它”相近“作物的株数x的线性回归方程;
(Ⅱ)农科所在如图所示的正方形地块的每个格点(指纵、横直线的交叉点)处都种了一株该作物,其中每一个小正方形的面积为1,若在所种作物中随机选取一株,求它的年收获量的分布列与数学期望.(注:年收获量以线性回归方程计算所得数据为依据)
附:对于一组数据(x1 , y1),(x2 , y2),…,(xn , yn),其回归直线y=a+bx的斜率和截距的最小二乘估计分别为 = = , = ﹣ .