题目内容

【题目】如图是函数的导函数的图象,给出下列命题:

①-2是函数的极值点;

是函数的极值点;

处取得极大值;

④函数在区间上单调递增.则正确命题的序号是

A. ①③ B. ②④ C. ②③ D. ①④

【答案】D

【解析】分析:由条件利用导函数的图象特征,利用导数研究函数的单调性和极值,逐一判断各个选项是否正确,从而得出结论.

详解:

根据导函数y=f′(x)的图象可得,y=f′(x)在(﹣∞,﹣2)上大于零,在(﹣2,2)、(2,+∞)上大于零,

f′(﹣2)=0,

故函数f(x)在(﹣∞,﹣2)上为减函数,在(﹣2,+∞)、(2,+∞)上为增函数.

故﹣2是函数y=f(x)的极小值点,故正确;

1不是函数y=f(x)的极值点,故不正确;

根据函数-1的两侧均为单调递增函数,故-1不是极值点.

根据y=f(x)=在区间(﹣2,2)上的导数大于或等于零,故f(x)在区间(﹣2,2)上单调递增,故正确,

故选:D.

练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网