题目内容
【题目】如图所示,三棱柱中,已知侧面, , , .
(1)求证: 平面;
(2)是棱上的一点,若二面角的正弦值为,求线段的长.
【答案】(Ⅰ)证明见解析;(Ⅱ)2或3.
【解析】试题分析:(Ⅰ)证明AB⊥BC1,在△CBC1中,由余弦定理求解B1C,然后证明BC⊥BC1,利用直线与平面垂直的判定定理证明C1B⊥平面ABC.
(Ⅱ)通过AB,BC,BC1两两垂直.以B为原点,BC,BA,BC1所在直线为x,y,z轴建立空间直角坐标系.求出相关点的坐标,求出平面AB1E的一个法向量,平面的一个法向量通过向量的数量积,推出λ的方程,求解即可.
试题解析: 证明:因为平面, 平面,所以,
在中, , , ,
由余弦定理得: ,
故,所以,
又,∴平面.
由可以知道, , ,两两垂直,以为原点, , ,所在直线为, , 轴建立空间直角坐标系.
则, , , , , , .
令,∴, .
设平面的一个法向量为,
,
令,则, ,
∴,
平面,∴是平面的一个法向量,
,两边平方并化简得,所以或.
∴或.
【题目】交强险是车主必须为机动车购买的险种,若普通6座以下私家车投保交强险第一年的费用(基准保费)统一为元,在下一年续保时,实行的是费率浮动机制,保费与上一年度车辆发生道路交通事故的情况相联系,发生交通事故的次数越多,费率也就越高,具体浮动情况如表:
交强险浮动因素和浮动费率比率表 | ||
浮动因素 | 浮动比率 | |
上一个年度未发生有责任道路交通事故 | 下浮10% | |
上两个年度未发生有责任道路交通事故 | 下浮20% | |
上三个及以上年度未发生有责任道路交通事故 | 下浮30% | |
上一个年度发生一次有责任不涉及死亡的道路交通事故 | 0% | |
上一个年度发生两次及两次以上有责任道路交通事故 | 上浮10% | |
上一个年度发生有责任道路交通死亡事故 | 上浮30% |
某机构为了研究某一品牌普通6座以下私家车的投保情况,随机抽取了60辆车龄已满三年的该品牌同型号私家车的下一年续保时的情况,统计得到了下面的表格:
类型 | ||||||
数量 | 10 | 5 | 5 | 20 | 15 | 5 |
以这60辆该品牌车的投保类型的频率代替一辆车投保类型的概率,完成下列问题:
求一辆普通6座以下私家车(车险已满三年)在下一年续保时保费高于基本保费的频率;
某二手车销售商专门销售这一品牌的二手车,且将下一年的交强险保费高于基本保费的车辆记为事故车.假设购进一辆事故车亏损5000元,一辆非事故车盈利10000元.且各种投保类型车的频率与上述机构调查的频率一致,完成下列问题:
①若该销售商购进三辆(车龄已满三年)该品牌二手车,某顾客欲在店内随机挑选两辆车,求这两辆车恰好有一辆为事故车的概率;
②若该销售商一次购进120辆(车龄已满三年)该品牌二手车,求一辆车盈利的平均值.