题目内容

【题目】若a,b是函数f(x)=x2﹣px+q(p>0,q>0)的两个不同的零点,且a,b,﹣2这三个数可适当排序后成等差数列,也可适当排序后成等比数列,则p+q的值等于

【答案】9
【解析】解:由题意可得:a+b=p,ab=q,
∵p>0,q>0,
可得a>0,b>0,
又a,b,﹣2这三个数可适当排序后成等差数列,也可适当排序后成等比数列,
可得 ①或 ②.
解①得: ;解②得:
∴p=a+b=5,q=1×4=4,
则p+q=9.
所以答案是:9.
【考点精析】解答此题的关键在于理解等差数列的性质的相关知识,掌握在等差数列{an}中,从第2项起,每一项是它相邻二项的等差中项;相隔等距离的项组成的数列是等差数列,以及对等比数列的基本性质的理解,了解{an}为等比数列,则下标成等差数列的对应项成等比数列;{an}既是等差数列又是等比数列== {an}是各项不为零的常数列.

练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网