题目内容
【题目】为响应国建“精准扶贫,产业扶贫”的战略,某市面向全国征召《扶贫政策》义务宣传志愿者,从年龄在[20,45]的500名志愿者中随机抽取100名,其年龄频率分布直方图如图所示
(1)求图中x的值
(2)在抽出的100名志愿者中按年龄采取分层抽样的方法抽取10名参加中心广场的宣传活动,再从这10名志愿者中选取3名担任主要负责人,记这3名志愿者中“年龄低于35岁”的人数为Y,求Y的分布列及数学期望.
【答案】
(1)解:由频率分布直方图的性质可得:(0.01+0.02+0.04+x+0.07)×5=1,解得x=0.06
(2)解:在抽出的100名志愿者中按年龄采取分层抽样的方法抽取10名:“年龄低于35岁”的人数为6,“年龄高于35岁”的人数为4..再从这10名志愿者中选取3名担任主要负责人,记这3名志愿者中“年龄低于35岁”的人数为Y可能为0,1,2,3.
则Y~B .P(Y=k)= .P(Y=0)= ,P(Y=1)= ,P(Y=2)= ,
P(Y=3)= .
Y | 0 | 1 | 2 | 3 |
P |
∴EY= =
【解析】(1)由频率分布直方图的性质可得:(0.01+0.02+0.04+x+0.07)×5=1,解得x.(2)在抽出的100名志愿者中按年龄采取分层抽样的方法抽取10名:“年龄低于35岁”的人数为6,“年龄高于35岁”的人数为4..再从这10名志愿者中选取3名担任主要负责人,记这3名志愿者中“年龄低于35岁”的人数为Y可能为0,1,2,3.可得Y~B .P(Y=k)= .
【考点精析】认真审题,首先需要了解离散型随机变量及其分布列(在射击、产品检验等例子中,对于随机变量X可能取的值,我们可以按一定次序一一列出,这样的随机变量叫做离散型随机变量.离散型随机变量的分布列:一般的,设离散型随机变量X可能取的值为x1,x2,.....,xi,......,xn,X取每一个值 xi(i=1,2,......)的概率P(ξ=xi)=Pi,则称表为离散型随机变量X 的概率分布,简称分布列).
【题目】某保险公司针对一个拥有20000人的企业推出一款意外险产品,每年每位职工只要交少量保费,发生意外后可一次性获得若干赔偿金.保险公司把企业的所有岗位共分为A、B、C三类工种,从事三类工种的人数分布比例如图,根据历史数据统计出三类工种的赔付频率如下表(并以此估计赔付频率).
工种类别 | A | B | C |
赔付频率 |
对于A、B、C三类工种职工每人每年保费分别为a元,a元,b元,出险后的赔偿金额分别为100万元,100万元,50万元,保险公司在开展此项业务过程中的固定支出为每年10万元.
(Ⅰ)若保险公司要求利润的期望不低于保费的20%,试确定保费a、b所要满足的条件;
(Ⅱ)现有如下两个方案供企业选择;
方案1:企业不与保险公司合作,企业自行拿出与保险提供的等额的赔偿金额赔付给出险职工;
方案2:企业与保险公司合作,企业负责职工保费的60%,职工个人负责保费的40%,出险后赔偿金由保险公司赔付.
若企业选择翻翻2的支出(不包括职工支出)低于选择方案1的支出期望,求保费a、b所要满足的条件,并判断企业是否可与保险公司合作.(若企业选择方案2的支出低于选择方案1的支出期望,且与(Ⅰ)中保险公司所提条件不矛盾,则企业可与保险公司合作.)