题目内容

【题目】在边长为4的正方形ABCD的边上有一点P,沿着折线BCDA由点B(起点)向点A(终点)运动.设点P运动的路程为x,APB的面积为y,yx之间的函数关系式用如图所示的程序框图给出.

(1)写出程序框图中①,,③处应填充的式子.

(2)若输出的面积y值为6,则路程x的值为多少?

【答案】(1)y=2x, y=8, y=24-2x. (2)x=3x=9.

【解析】

(1)先求出定义域,根据点P的位置进行分类讨论,根据三角形的面积公式求出每一段APB的面积与P移动的路程间的函数关系式,即可写出框图中①,,③处应填充的式子.

(2)结合函数的解析式,建立等式,即可求出x的值.

解:(1)由题意,得函数的定义域为

时,

时,

时,.

故程序框图中①,,③处应填充的式子分别为:y=2x, y=8,y=24-2x.

(2)若输出的y值为6,

时,2x=6,解得x=3;

时,24-2x=6, 解得x=9.

综上,输出的面积y值为6,则路程x的值为3或9.

练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网