题目内容
【题目】已知f(x)=|x﹣1|+|x+1|.
(1)求f(x)≤x+2的解集;
(2)若 R),求证: 对a∈R,且a≠0成立.
【答案】
(1)解:当x≤﹣1时,不等式f(x)≤x+2为:1﹣x﹣x﹣1≤x+2,解得x≥﹣ (舍);
当﹣1<x≤1时,不等式f(x)≤x+2为:1﹣x+x+1≤x+2,解得x≥0,∴0≤x≤1;
当x>1时,不等式f(x)≤x+2为:x﹣1+x+1≤x+2,解得x≤2,∴1<x≤2.
综上,f(x)≤x+2的解集为{x|0≤x≤2}
(2)解:∵g(x)=|x+ |+|x﹣ |≥|x+ ﹣x+ |=3,
而 ≤ ≤|1+ +2﹣ |=3,
∴ 对a∈R,且a≠0成立
【解析】(1)讨论x的范围,去掉绝对值符号解出;(2)利用绝对值不等式的性质转化得出.
【考点精析】认真审题,首先需要了解不等式的证明(不等式证明的几种常用方法:常用方法有:比较法(作差,作商法)、综合法、分析法;其它方法有:换元法、反证法、放缩法、构造法,函数单调性法,数学归纳法等).
练习册系列答案
相关题目
【题目】某零售店近5个月的销售额和利润额资料如下表:
商店名称 | |||||
销售额/千万元 | 3 | 5 | 6 | 7 | 9 |
利润额/百万元 | 2 | 3 | 3 | 4 | 5 |
(1)画出散点图.观察散点图,说明两个变量有怎样的相关关系;
(2)用最小二乘法计算利润额关于销售额的回归直线方程;
(3)当销售额为4千万元时,利用(2)的结论估计该零售店的利润额(百万元).
[参考公式:,]