题目内容

【题目】某保险公司针对一个拥有20000人的企业推出一款意外险产品,每年每位职工只要交少量保费,发生意外后可一次性获得若干赔偿金.保险公司把企业的所有岗位共分为A、B、C三类工种,从事三类工种的人数分布比例如图,根据历史数据统计出三类工种的赔付频率如下表(并以此估计赔付频率).

工种类别

A

B

C

赔付频率

对于A、B、C三类工种职工每人每年保费分别为a元,a元,b元,出险后的赔偿金额分别为100万元,100万元,50万元,保险公司在开展此项业务过程中的固定支出为每年10万元.

(Ⅰ)若保险公司要求利润的期望不低于保费的20%,试确定保费a、b所要满足的条件;
(Ⅱ)现有如下两个方案供企业选择;
方案1:企业不与保险公司合作,企业自行拿出与保险提供的等额的赔偿金额赔付给出险职工;
方案2:企业与保险公司合作,企业负责职工保费的60%,职工个人负责保费的40%,出险后赔偿金由保险公司赔付.
若企业选择翻翻2的支出(不包括职工支出)低于选择方案1的支出期望,求保费a、b所要满足的条件,并判断企业是否可与保险公司合作.(若企业选择方案2的支出低于选择方案1的支出期望,且与(Ⅰ)中保险公司所提条件不矛盾,则企业可与保险公司合作.)

【答案】解:(Ⅰ)设工种A,B,C职工的每份保单保险公司的效益为随机变量X,Y,Z, 则随机变量X的分布列为:

X

a

a﹣100×104

P

随机变量Y的分布列为:

Y

a

a﹣100×104

P

随机变量Z的分布列为:

Z

b

b﹣50×104

P

保险公司期望收益为 =a﹣10,
=a﹣20,
=b﹣50;
根据要求(a﹣10)×20000×0.6+(a﹣20)×20000×0.3+(b﹣50)×20000×0.1﹣10×104
≥(a×20000×0.6+a×20000×0.3+b×20000×0.1)×0.2,
解得9a+b≥275,
所以每张保单的保费需要满足9a+b≥275元;
(Ⅱ)若该企业不与保险公司合作,则安全支出,
即赔偿金的期望值为
20000×0.6× ×100×104+0.3× ×100×104+0.1× ×50×104=17×20000;
若该企业与保险公司合作,则安全支出,
即保费为20000×(0.6×a+0.3×a+0.1×b)×0.6=(0.9×a+0.1×b)×0.6×20000;
解得9a+b<283.33,
结果与(Ⅰ)不冲突,所以企业有可能与保险公司合作
【解析】(Ⅰ)设工种A,B,C职工的每份保单保险公司的效益为随机变量X,Y,Z,写出随机变量X、Y、Z的分布列,计算保险公司期望收益EX、EY、EZ;根据要求列出不等式,求出a、b满足的条件;(Ⅱ)计算企业不与保险公司合作时安全支出(即赔偿金的期望值),以及企业与保险公司合作的安全支出(即保费),比较大小.

练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网