题目内容
【题目】已知函数f(x)=ax﹣e(x+1)lna﹣ (a>0,且a≠1),e为自然对数的底数.
(1)当a=e时,求函数y=f(x)在区间x∈[0,2]上的最大值
(2)若函数f(x)只有一个零点,求a的值.
【答案】
(1)解:当a=e时,f(x)=ex﹣e(x+1)lne﹣ =ex﹣e(x+1)﹣ ,
∴f′(x)=ex﹣e,
令f′(x)=0,解得x=1,
当x∈[0,1]时,f′(x)<0,函数f(x)单调递减,
当x∈(1,2]时,f′(x)>0,函数f(x)单调递增,
∵f(0)=1﹣e﹣ ,f(2)=e2﹣3e﹣ ,
∴f(2)﹣f(0)=e2﹣3e﹣ ﹣1+e+ =e2﹣2e﹣1>0,
∴函数y=f(x)在区间x∈[0,2]上的最大值为e2﹣3e﹣
(2)解:f′(x)=axlna﹣elna=lna(ax﹣e),
当0<a<1时,由f′(x)=axlna﹣elna=lna(ax﹣e)<0,得ax﹣e>0,即x .
由f′(x)=axlna﹣elna=lna(ax﹣e)>0,得ax﹣e<0,即x .
∴f(x)在(﹣∞, )上为减函数,在( ,+∞)上为增函数,
∴当x= 时函数取得最小值为f( )= = .
要使函数f(x)只有一个零点,则 ,得a= ;
当a>1时,由f′(x)=axlna﹣elna=lna(ax﹣e)<0,得ax﹣e<0,即x .
由f′(x)=axlna﹣elna=lna(ax﹣e)>0,得ax﹣e>0,即x .
∴f(x)在(﹣∞, )上为减函数,在( ,+∞)上为增函数,
∴当x= 时函数取得最小值为f( )= = .
要使函数f(x)只有一个零点,则 ,得a= (舍).
综上,若函数f(x)只有一个零点,则a=
【解析】(1)把a=e代入函数解析式,求出导函数的零点,可得原函数在[0,1]上单调递减,在(1,2]上单调递增,结合f(2)﹣f(0)>0,可得函数y=f(x)在区间x∈[0,2]上的最大值;(2)求出原函数的导函数,分0<a<1和a>1求得原函数的最小值,由最小值等于0求得a值.
【考点精析】本题主要考查了利用导数研究函数的单调性的相关知识点,需要掌握一般的,函数的单调性与其导数的正负有如下关系: 在某个区间内,(1)如果,那么函数在这个区间单调递增;(2)如果,那么函数在这个区间单调递减才能正确解答此题.
【题目】4月23人是“世界读书日”,某中学在此期间开展了一系列的读书教育活动,为了解本校学生课外阅读情况,学校随机抽取了100名学生对其课外阅读时间进行调查,下面是根据调查结果绘制的学生日均课外阅读时间(单位:分钟)的频率分布直方图,若将日均课外阅读时间不低于60分钟的学生称为“读书谜”,低于60分钟的学生称为“非读书谜”
(1)求x的值并估计全校3000名学生中读书谜大概有多少?(经频率视为频率)
非读书迷 | 读书迷 | 合计 | |
男 | 15 | ||
女 | 45 | ||
合计 |
(2)根据已知条件完成下面2×2的列联表,并据此判断是否有99%的把握认为“读书谜”与性别有关? 附:K2= n=a+b+c+d
P(K2≥k0) | 0.100 | 0.050 | 0.025 | 0.010 | 0.001 |
k0 | 2.706 | 3.841 | 5.024 | 6.635 | 10.828 |