题目内容
11.已知集合M={x|x2+3x<4},N={-2,-1,0,1,2},则M∩N=( )A. | {-3,-2,-1,0,1} | B. | {-2,-1,0,1} | C. | {-2,-1,0} | D. | {-1,0,1,2} |
分析 求出M中不等式的解集确定出M,找出M与N的交集即可.
解答 解:由M中不等式变形得:(x-1)(x+4)<0,
解得:-4<x<1,即M=(-4,1),
∵N={-2,-1,0,1,2},
∴M∩N={-2,-1,0},
故选:C.
点评 此题考查了交集及其运算,熟练掌握交集的定义是解本题的关键.
练习册系列答案
相关题目
10.设实数a,b是方程|lgx|=c的两个不同的实根,若a<b<10,则abc的取值范围是( )
A. | (0,1) | B. | (1,10) | C. | (10,100) | D. | (1,100) |
2.下列命题中,真命题是( )
A. | 命题?x∈R,2x>x2的否定是真命题 | B. | a>1,b>1是ab>1的充要条件 | ||
C. | {x|x2-4>0}∩{x|x-1<0}=(-2,1) | D. | ?x0∈R,ex0≤0 |
6.已知{an}为等差数列,ap=q,aq=p(p≠q,p,q为正整数),则ap+q的值为( )
A. | 0 | B. | p+q | C. | p-q | D. | 2p |
16.函数f(x)=tan($\frac{π}{4}$-x)的单调递减区间为( )
A. | (kπ-$\frac{3π}{4}$,kπ+$\frac{π}{4}$),k∈Z | B. | (kπ-$\frac{π}{4}$,kπ+$\frac{3π}{4}$),k∈Z | ||
C. | (kπ-$\frac{π}{2}$,kπ+$\frac{π}{2}$),k∈Z | D. | (kπ,(k+1)π),k∈Z |
20.已知曲线y=$\frac{1}{3}{x^3}$经过点$P(2,\frac{8}{3})$,则在P点处的切线方程为( )
A. | 3x-12y-16=0 | B. | 12x-3y-16=0 | C. | 3x-12y+16=0 | D. | 12x-3y+16=0 |