题目内容

【题目】等差数列{an}的前n项和Sn , 若a3+a7﹣a10=8,a11﹣a4=4,则S13等于(
A.152
B.154
C.156
D.158

【答案】C
【解析】解:解法1:∵{an}为等差数列,设首项为a1 , 公差为d, ∴a3+a7﹣a10=a1+2d+a1+6d﹣a1﹣9d=a1﹣d=8①;a11﹣a4=a1+10d﹣a1﹣3d=7d=4②,
联立①②,解得a1= ,d=
∴s13=13a1+ d=156.
解法2:∵a3+a7﹣a10=8①,a11﹣a4=4②,
①+②可得a3+a7﹣a10+a11﹣a4=12,
∵根据等差数列的性质a3+a11=a10+a4
∴a7=12,
∴s13= ×13=13a7=13×12=156.
故选C.
【考点精析】本题主要考查了等差数列的前n项和公式的相关知识点,需要掌握前n项和公式:才能正确解答此题.

练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网