题目内容
【题目】某宾馆有相同标准的床位100张,根据经验,当该宾馆的床价(即每张床位每天的租金)不超过10元时,床位可以全部租出;当床位高于10元时,每提高1元,将有3张床位空闲. 为了获得较好的效益,该宾馆要给床位定一个合适的价格,条件是:①要方便结帐,床价应为1元的整数倍;②该宾馆每日的费用支出为575元,床位出租的收入必须高于支出,而且高得越多越好.若用x表示床价,用y表示该宾馆一天出租床位的净收入(即除去每日的费用支出后的收入):
(1)把y表示成x的函数;
(2)试确定,该宾馆将床价定为多少元时,既符合上面的两个条件,又能使净收入高?
【答案】
(1)解:
(2)解:当6≤x≤10且x∈N*时,y=100x﹣575,
所以当x=10时,ymax=425;
当11≤x≤38且x∈N*时,y=﹣3x2+130x﹣575=﹣3(x﹣65/3)2+2500/3,
所以当x=22时,ymax=833;
综上,当x=22时,ymax=833.
答:该宾馆将床价定为22元时,净收入最高为833元
【解析】(1)当床价不超过10元时,床位全部租出,该宾馆一天出租床位的净收入为100x﹣575,由于床位出租的收入必须高于支出且x为整数,得到6≤x≤10且x∈N+;当床价超过10元时,该宾馆一天出租床位的净收入为[100﹣3(x﹣10)]x﹣575,化简可得,此时的11≤x≤38;(2)分两段求函数的最大值,当6≤x≤10,当x=10时,ymax=425;当11≤x≤38且x∈N*时,根据二次函数求最大值的方法求出即可,然后判断去最大.
【题目】兰州一中在世界读书日期间开展了“书香校园”系列读书教育活动。为了解本校学生课外阅读情况,学校随机抽取了100名学生对其课外阅读时间进行调查。下面是根据调查结果绘制的学生日均课外阅读时间(单位:分钟)的频率分布直方图,且将日均课外阅读时间不低于60分钟的学生称为“读书迷”,低于60分钟的学生称为“非读书迷”。
非读书迷 | 读书迷 | 合计 | |
男 | 15 | ||
女 | 45 |
(1)根据已知条件完成下面2×2列联表,并据此判断是否有99%的把握认为“读书迷”与性别有关?
(2)利用分层抽样从这100名学生的“读书迷”中抽取8名进行集训,从中选派2名参加兰州市读书知识比赛,求至少有一名男生参加比赛的概率。
附:
0.100 | 0.050 | 0.025 | 0.010 | 0.001 | |
k0 | 2.706 | 3.841 | 5.024 | 6.635 | 10.828 |
【题目】某工厂有25周岁以上(含25周岁)工人300名,25周岁以 下工人200名.为研究工人的日平均生产量是否与年龄有关.现采用分层抽样的方法,从中抽取了100名工人,先统计了他们某月的日平均生产件数,然后按工人年龄在“ 25周岁以上(含25周岁)”和“25周岁以下”分为两组,再将两组工人的日平均生产件数分成5组: , , , , 分别加以统计,得到如图所示的频率分布直方图.
附表:
P( ) | 0.100 | 0 .010 | 0.001 |
k | 2.706 | 6.635 | 10.828 |
,(其中 )
(1)从样本中日平均生产件数不足60件的工人中随机抽取2人,求至少抽到一名“25周岁以下组”工人的频率.
(2)规定日平均生产件数不少于80件者为“生产能手”,请你根据已知条件完成 的列联表,并判断是否有 的把握认为“生产能手与工人所在的年龄组有关”?