题目内容

【题目】已知二次函数f(x)的最小值为1,且f(0)=f(2)=3.
(1)求f(x)的解析式;
(2)若f(x)在区间[2a,a+1]上不单调,求实数a的取值范围;
(3)在区间[﹣1,1]上,y=f(x)的图象恒在y=2x+2m+1的图象上方,试确定实数m的取值范围.

【答案】
(1)解:由已知∵f(x)是二次函数,且f(0)=f(2)

∴对称轴为x=1

又最小值为1

设f(x)=a(x﹣1)2+1

又f(0)=3

∴a=2

∴f(x)=2(x﹣1)2+1=2x2﹣4x+3


(2)解:要使f(x)在区间[2a,a+1]上不单调,则2a<1<a+1


(3)解:由已知2x2﹣4x+3>2x+2m+1在[﹣1,1]上恒成立

化简得m<x2﹣3x+1

设g(x)=x2﹣3x+1

则g(x)在区间[﹣1,1]上单调递减

∴g(x)在区间[﹣1,1]上的最小值为g(1)=﹣1

∴m<﹣1


【解析】(1)用待定系数法先设函数f(x)的解析式,再由已知条件求解未知量即可(2)只需保证对称轴落在区间内部即可(3)转化为函数求最值问题,即可得到个关于变量m的不等式,解不等式即可
【考点精析】解答此题的关键在于理解二次函数的性质的相关知识,掌握当时,抛物线开口向上,函数在上递减,在上递增;当时,抛物线开口向下,函数在上递增,在上递减.

练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网