题目内容
已知,证明:,并利用上述结论求的最小值(其中.
见解析;
试题分析:可用作差比较;作差比较大小的关键是恰当变形,达到易于判断符号的目的,而常用的变形方法有配方法、因式分解等如本题中将作差后关键就是变形确定符号,将其展开 后合并同类项得,这个式子刚好就是一个完全平方,而,所以有。也可以用分析法等来证明。分析法是从求证的不等式出发,分析使这个不等式成立的充分条件,把证明不等式转化为判定这些充分条件是否具备的问题。如果能够肯定这些充分条件都已具备,那么就可以断定原不等式成立,这种证明方法叫做分析法。如本题中要证明,则找使得这个不等式成立的充分条件依次找下去,最后得到(显然成立),所以不等式得证。
试题解析:
4分
7分
(法二)要证明
只要证 2分
即证 4分
即证(显然成立)
故原不等式得证 7分
由不等式成立
知, 10分
即最小值为25,当且仅当时等号成立。 13分
练习册系列答案
相关题目