题目内容
(本小题满分16分)已知数列
中,
,
,其前
项和
满足
其中(
,
).
(1)求数列
的通项公式;
(2)设
为非零整数,
),试确定
的值,使得对任意
,都有
成立.
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823141615811380.gif)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823141615827251.gif)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823141615858254.gif)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823141615905192.gif)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823141615921220.gif)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823141615936541.gif)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823141615952244.gif)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823141615952383.gif)
(1)求数列
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823141615811380.gif)
(2)设
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823141615999663.gif)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823141615952383.gif)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823141616108197.gif)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823141615952383.gif)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823141616123411.gif)
(1)
.(2)存在
,使得对任意
,都有![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823141616420409.gif)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823141616139400.gif)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823141616155238.gif)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823141615952383.gif)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823141616420409.gif)
(1)由已知,
(
,
),
即
(
,
),且
.
∴数列
是以
为首项,公差为1的等差数列. ∴
.
(2)∵
,∴
,要使
恒成立,
∴
恒成立,
∴
恒成立, ∴
恒成立.
(ⅰ)当
为奇数时,即
恒成立,
当且仅当
时,
有最小值为1, ∴
.
(ⅱ)当
为偶数时,即
恒成立,
当且仅当
时,
有最大值
, ∴
.
即
,又
为非零整数,则
.
综上所述,存在
,使得对任意
,都有
.
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823141616435673.gif)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823141615952244.gif)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823141615952383.gif)
即
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823141616498417.gif)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823141615952244.gif)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823141615952383.gif)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823141616545296.gif)
∴数列
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823141615811380.gif)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823141615827251.gif)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823141616139400.gif)
(2)∵
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823141616139400.gif)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823141616623607.gif)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823141616123411.gif)
∴
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/201408231416166541045.gif)
∴
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823141616669682.gif)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823141616685508.gif)
(ⅰ)当
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823141615905192.gif)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823141616716388.gif)
当且仅当
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823141616732234.gif)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823141616747229.gif)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823141616763236.gif)
(ⅱ)当
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823141615905192.gif)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823141616794396.gif)
当且仅当
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823141616919233.gif)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823141616950343.gif)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823141616966202.gif)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823141616981360.gif)
即
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823141616997394.gif)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823141616108197.gif)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823141616155238.gif)
综上所述,存在
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823141616155238.gif)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823141615952383.gif)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823141616420409.gif)
![](http://thumb.zyjl.cn/images/loading.gif)
练习册系列答案
相关题目