题目内容
【题目】三棱锥P﹣ABC中,△ABC为等边三角形,PA=PB=PC=2,PA⊥PB,三棱锥P﹣ABC的外接球的表面积为( )
A.48π
B.12π
C.4 π
D.32 π
【答案】B
【解析】解:∵三棱锥P﹣ABC中,△ABC为等边三角形,PA=PB=PC=2,∴△PAB≌△PAC≌△PBC
∵PA⊥PB,
∴PA⊥PC,PB⊥PC
以PA、PB、PC为过同一顶点的三条棱,作长方体如图
则长方体的外接球同时也是三棱锥P﹣ABC外接球.
∵长方体的对角线长为 =2 ,
∴球直径为2 ,半径R= ,
因此,三棱锥P﹣ABC外接球的表面积是4πR2=4π×( )2=12π
故选:B.
证明PA⊥PC,PB⊥PC,以PA、PB、PC为过同一顶点的三条棱,作长方体如图,则长方体的外接球同时也是三棱锥P﹣ABC外接球.算出长方体的对角线即为球直径,结合球的表面积公式,可算出三棱锥P﹣ABC外接球的表面积.
练习册系列答案
相关题目
【题目】下表是某厂生产某种产品的过程中记录的几组数据,其中表示产量(单位:吨),表示生产中消耗的煤的数量(单位:吨).
(1)试在给出的坐标系下作出散点图,根据散点图判断,在与中,哪一个方程更适合作为变量关于的回归方程模型?(给出判断即可,不需要说明理由)
(2)根据(1)的结果以及表中数据,建立变量关于的回归方程.并估计生产吨产品需要准备多少吨煤.参考公式:.