题目内容

【题目】已知函数f(x)=|2x﹣1|+|2x+a|,g(x)=x+3.
(1)当a=2时,求不等式f(x)<g(x)的解集;
(2)设a> ,且当x∈[ ,a]时,f(x)≤g(x),求a的取值范围.

【答案】
(1)解:由|2x﹣1|+|2x+2|<x+3,得:

得x∈

得0<x≤

综上:不等式f(x)<g(x)的解集为


(2)解:∵a> ,x∈[ ,a],

∴f(x)=4x+a﹣1

由f(x)≤g(x)得:3x≤4﹣a,即x≤

依题意:[ ,a](﹣∞, ]

∴a≤ 即a≤1

∴a的取值范围是( ,1]


【解析】(1)对x分类讨论,去掉绝对值符号解出即可得出.(2)当a> ,x∈[ ,a],时,f(x)=4x+a﹣1,不等式f(x)≤g(x)化为3x≤4﹣a,化简利用a的取值范围即可得出.

练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网