题目内容
数列{an}是首项a1=4的等比数列,且S3,S2,S4成等差数列.
(1)求数列{an}的通项公式;
(2)设bn=log2|an|,Tn为数列的前n项和,求Tn.
(1)求数列{an}的通项公式;
(2)设bn=log2|an|,Tn为数列的前n项和,求Tn.
(1)an=4(-2)n-1=(-2)n+1(2)-=
(1)当q=1时,S3=12,S2=8,S4=16,不成等差数列.
q≠1时,=+
得2q2=q3+q4,∴q2+q-2=0,∴q=-2.
∴an=4(-2)n-1=(-2)n+1.
(2)bn=log2|an|=log2|(-2)n+1|=n+1.
==-
∴Tn=++…+
=-=.
q≠1时,=+
得2q2=q3+q4,∴q2+q-2=0,∴q=-2.
∴an=4(-2)n-1=(-2)n+1.
(2)bn=log2|an|=log2|(-2)n+1|=n+1.
==-
∴Tn=++…+
=-=.
练习册系列答案
相关题目