题目内容

【题目】在△ABC中,内角A,B,C对边的边长分别是a,b,c,已知c=2,C=
(1)若△ABC的面积等于 ,求a,b;
(2)若sinC+sin(B﹣A)=2sin2A,求△ABC的面积.

【答案】
(1)解:∵c=2,C= ,c2=a2+b2﹣2abcosC

∴a2+b2﹣ab=4,

又∵△ABC的面积等于

∴ab=4

联立方程组 ,解得a=2,b=2


(2)解:∵sinC+sin(B﹣A)=sin(B+A)+sin(B﹣A)=2sin2A=4sinAcosA,

∴sinBcosA=2sinAcosA

当cosA=0时, ,求得此时

当cosA≠0时,得sinB=2sinA,由正弦定理得b=2a,

联立方程组 解得

所以△ABC的面积

综上知△ABC的面积


【解析】(1)先通过余弦定理求出a,b的关系式;再通过正弦定理及三角形的面积求出a,b的另一关系式,最后联立方程求出a,b的值.(2)通过C=π﹣(A+B)及二倍角公式及sinC+sin(B﹣A)=2sin2A,求出∴sinBcosA=2sinAcosA.当cosA=0时求出a,b的值进而通过 absinC求出三角形的面积;当cosA≠0时,由正弦定理得b=2a,联立方程解得a,b的值进而通过 absinC求出三角形的面积.

练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网