题目内容
17.利用秦九韶算法求多项式f(x)=-6x4+5x3+2x+6在x=3时,v3的值为( )A. | -486 | B. | -351 | C. | -115 | D. | -339 |
分析 根据秦九韶算法先别多项式进行改写,然后进行计算即可.
解答 解:根据秦九韶算法,把多项式改成如下形式f(x)=(((-6x+5)x+0)x+2)x+6,
当x=3时,v1=-6×3+5=-13,v2=-13×3=-39,v3=-39×3+2=-115,
故选:C.
点评 本题主要考查秦九韶算法的应用,根据秦九韶算法的步骤把多项式进行改写是解决本题的关键.
练习册系列答案
相关题目
2.二项式(x2-$\frac{1}{x}$)6展开式中的常数项为( )
A. | 120 | B. | -30 | C. | 15 | D. | -15 |
8.假设关于某市的房屋面积x(平方米)与购房费用y(万元),有如下的统计数据
(1)用最小二乘法求出y关于x的线性回归方程$\stackrel{∧}{y}$=$\stackrel{∧}{b}$x+$\stackrel{∧}{a}$.(假设已知y对x呈线性相关)
(2)若在该市购买120平方米的房屋,估计购房费用是多少?
参考公式:$\stackrel{∧}{b}$=$\frac{\sum_{i=1}^{n}({x}_{i}-\overline{x})({y}_{i}-\overline{y})}{\sum_{i=1}^{n}({x}_{i}-\overline{x})^{2}}$=$\frac{\sum_{i=1}^{n}{x}_{i}{y}_{i}-n\overline{x}\overline{y}}{\sum_{i=1}^{n}{{x}_{i}}^{2}-n{\overline{x}}^{2}}$,$\stackrel{∧}{a}$=$\overline{y}$-$\stackrel{∧}{b}$$\overline{x}$.
x(平方米) | 80 | 90 | 100 | 110 |
y(万元) | 42 | 46 | 53 | 59 |
(2)若在该市购买120平方米的房屋,估计购房费用是多少?
参考公式:$\stackrel{∧}{b}$=$\frac{\sum_{i=1}^{n}({x}_{i}-\overline{x})({y}_{i}-\overline{y})}{\sum_{i=1}^{n}({x}_{i}-\overline{x})^{2}}$=$\frac{\sum_{i=1}^{n}{x}_{i}{y}_{i}-n\overline{x}\overline{y}}{\sum_{i=1}^{n}{{x}_{i}}^{2}-n{\overline{x}}^{2}}$,$\stackrel{∧}{a}$=$\overline{y}$-$\stackrel{∧}{b}$$\overline{x}$.
5.若$\frac{1}{a}$<$\frac{1}{b}$<0,则下列不等式中,正确的不等式有( )
①a+b<ab ②|a|<|b|③a<b ④a2+b2+2a-2b+2>0.
①a+b<ab ②|a|<|b|③a<b ④a2+b2+2a-2b+2>0.
A. | 1个 | B. | 2个 | C. | 3个 | D. | 4个 |
12.函数f(x)=$\frac{x-1+2co{s}^{2}x}{x}$,其图象的对称中心是( )
A. | (1,-1) | B. | (-1,1) | C. | (0,1) | D. | (0,-1) |
2.将3个大小形状完全相同但颜色不同的小球放入3个盒子中,恰有一个盒子是空的概率是( )
A. | $\frac{3}{10}$ | B. | $\frac{2}{3}$ | C. | $\frac{3}{5}$ | D. | $\frac{9}{10}$ |
9.函数f(x)=$\frac{1}{3}$x3-$\frac{1}{2}$(2b+1)x2+b(b+1)x在(0,2)内有极小值,则( )
A. | 0<b<1 | B. | 0<b<2 | C. | -1<b<1 | D. | -1<b<2 |
6.已知函数y=f(x)在定义域内可导,则函数y=f(x)在某点处的导数值为0是函数y=f(x)在这点处取得极值的( )
A. | 充分不必要条件 | B. | 必要不充分条件 | ||
C. | 充要条件 | D. | 非充分非必要条件 |
7.可以将椭圆$\frac{{x}^{2}}{10}$+$\frac{{y}^{2}}{8}$=1变为圆x2+y2=4的伸缩变换为( )
A. | $\left\{\begin{array}{l}{\sqrt{2}x′=\sqrt{5}x}\\{y′=\sqrt{2}y}\end{array}\right.$ | B. | $\left\{\begin{array}{l}{\sqrt{2}x′=x}\\{\sqrt{5}y′=\sqrt{2}y}\end{array}\right.$ | C. | $\left\{\begin{array}{l}{\sqrt{5}x′=\sqrt{2}x}\\{\sqrt{2}y′=y}\end{array}\right.$ | D. | $\left\{\begin{array}{l}{5x′=2x}\\{\sqrt{2}y′=y}\end{array}\right.$ |