题目内容

7.可以将椭圆$\frac{{x}^{2}}{10}$+$\frac{{y}^{2}}{8}$=1变为圆x2+y2=4的伸缩变换为(  )
A.$\left\{\begin{array}{l}{\sqrt{2}x′=\sqrt{5}x}\\{y′=\sqrt{2}y}\end{array}\right.$B.$\left\{\begin{array}{l}{\sqrt{2}x′=x}\\{\sqrt{5}y′=\sqrt{2}y}\end{array}\right.$C.$\left\{\begin{array}{l}{\sqrt{5}x′=\sqrt{2}x}\\{\sqrt{2}y′=y}\end{array}\right.$D.$\left\{\begin{array}{l}{5x′=2x}\\{\sqrt{2}y′=y}\end{array}\right.$

分析 利用椭圆化为圆的伸缩变换公式即可得出.

解答 解:椭圆$\frac{{x}^{2}}{10}$+$\frac{{y}^{2}}{8}$=1化为$\frac{2{x}^{2}}{5}+\frac{{y}^{2}}{2}$=4,
令$\left\{\begin{array}{l}{\sqrt{5}{x}^{′}=\sqrt{2}x}\\{\sqrt{2}{y}^{′}=y}\end{array}\right.$即可化为(x′)2+(y′)2=4,
故选:C.

点评 本题考查了椭圆化为圆的伸缩变换公式,属于基础题.

练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网