题目内容
【题目】在平面直角坐标系xOy中,已知圆,三个点,B、C均在圆上,
(1)求该圆的圆心的坐标;
(2)若,求直线BC的方程;
(3)设点满足四边形TABC是平行四边形,求实数t的取值范围.
【答案】(1)(2)或(3),
【解析】
(1)将点代入圆的方程可得的值,继而求出半径和圆心(2)可设直线方程为:,可得圆心到直线的距离,结合弦心距定理可得的值,求出直线方程(3)设,,,,因为平行四边形的对角线互相平分,得,,于是点既在圆上,又在圆上,从而圆与圆上有公共点,即可求解.
(1)将代入圆
得,
解得,
.半径.
(2),
,且,
设直线,即,
圆心到直线的距离,
由勾股定理得,
,
,
,
或,
所以直线的方程为或.
(3)设,,,,
因为平行四边形的对角线互相平分,
所以①,
因为点在圆上,
所以②
将①代入②,得
,
于是点既在圆上,又在圆上,
从而圆与圆有公共点,
所以,
解得.
因此,实数的取值范围是,.
练习册系列答案
相关题目
【题目】某种产品的质量以其质量指标值来衡量,质量指标值越大表明质量越好,记其质量指标值为,当时,产品为一等品;当时,产品为二等品;当时,产品为三等品.现有甲、乙两条生产线,各生产了100件该产品,测量每件产品的质量指标值,得到下面的试验结果.(以下均视频率为概率)
甲生产线生产的产品的质量指标值的频数分布表:
指标值分组 | ||||
频数 | 10 | 30 | 40 | 20 |
乙生产线产生的产品的质量指标值的频数分布表:
指标值分组 | |||||
频数 | 10 | 15 | 25 | 30 | 20 |
(1)若从乙生产线生产的产品中有放回地随机抽取3件,求至少抽到2件三等品的概率;
(2)若该产品的利润率与质量指标值满足关系:,其中,从长期来看,哪条生产线生产的产品的平均利润率更高?请说明理由.