题目内容
【题目】如图,在直三棱柱中,,,,点是的中点.
(1)求异面直线与所成角的余弦值;
(2)求平面与所成二面角的正弦值.
【答案】(1);(2).
【解析】
(1)以为单位正交基底建系,找出与的坐标,用向量法来求解异面直线与所成角;
(2)由(1)中建系可知,平面的一个法向量为,再设出平面的法向量,则与平面内的两个不共线向量乘积为0,从而求得,再来求出两个法向量夹角余弦值,进而通过三角函数平方和为1,求得两个平面夹角的正弦值.
(1)以为单位正交基底建立空间直角坐标系,
则由题意知,,,
,,,
∴,,
∴,
∴异面直线与所成角的余弦值为.
(2) 是平面的一个法向量,
设平面的法向量为,
∵,
∴,取,得,,
∴平面的法向量为,
设平面与所成二面角为,
∴,
∴sinθ.
∴平面ADC1与ABA1所成二面角的正弦值为.
【题目】某景区的各景点从2009年取消门票实行免费开放后,旅游的人数不断地增加,不仅带动了该市淡季的旅游,而且优化了旅游产业的结构,促进了该市旅游向“观光、休闲、会展”三轮驱动的理想结构快速转变.下表是从2009年至2018年,该景点的旅游人数(万人)与年份的数据:
第年 | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | 10 |
旅游人数(万人) | 300 | 283 | 321 | 345 | 372 | 435 | 486 | 527 | 622 | 800 |
该景点为了预测2021年的旅游人数,建立了与的两个回归模型:
模型①:由最小二乘法公式求得与的线性回归方程;
模型②:由散点图的样本点分布,可以认为样本点集中在曲线的附近.
(1)根据表中数据,求模型②的回归方程.(精确到个位,精确到0.01).
(2)根据下列表中的数据,比较两种模型的相关指数,并选择拟合精度更高、更可靠的模型,预测2021年该景区的旅游人数(单位:万人,精确到个位).
回归方程 | ① | ② |
30407 | 14607 |
参考公式、参考数据及说明:
①对于一组数据,其回归直线的斜率和截距的最小二乘法估计分别为.②刻画回归效果的相关指数;③参考数据:,.
5.5 | 449 | 6.05 | 83 | 4195 | 9.00 |
表中.