题目内容
【题目】如图,在三棱柱中,是边长为2的菱形,且,是矩形,,且平面平面,点在线段上移动(不与重合),是的中点.
(1)当四面体的外接球的表面积为时,证明:.平面
(2)当四面体的体积最大时,求平面与平面所成锐二面角的余弦值.
【答案】(1)证明见解析(2)
【解析】
(1)由题意,先求得为的中点,再证明平面平面,进而可得结论;
(2)由题意,当点位于点时,四面体的体积最大,再建立空间直角坐标系,利用空间向量运算即可.
(1)证明:当四面体的外接球的表面积为时.
则其外接球的半径为.
因为时边长为2的菱形,是矩形.
,且平面平面.
则,.
则为四面体外接球的直径.
所以,即.
由题意,,,所以.
因为,所以为的中点.
记的中点为,连接,.
则,,,所以平面平面.
因为平面,所以平面.
(2)由题意,平面,则三棱锥的高不变.
当四面体的体积最大时,的面积最大.
所以当点位于点时,四面体的体积最大.
以点为坐标原点,建立如图所示的空间直角坐标系.
则,,,,.
所以,,,.
设平面的法向量为.
则
令,得.
设平面的一个法向量为.
则
令,得.
设平面与平面所成锐二面角是,则.
所以当四面体的体积最大时,平面与平面所成锐二面角的余弦值为.
【题目】“伟大的变革—庆祝改革开放40周年大型展览”于2019年3月20日在中国国家博物馆闭幕,本次特展紧扣“改革开放40年光辉历程”的主线,多角度、全景式描绘了我国改革开放40年波澜壮阔的历史画卷.据统计,展览全程呈现出持续火爆的状态,现场观众累计达423万人次,参展人数屡次创造国家博物馆参观纪录,网上展馆点击浏览总量达4.03亿次.
下表是2019年2月参观人数(单位:万人)统计表
日期 | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | 10 | 11 | 12 | 13 | 14 |
人数 | 3.0 | 3.1 | 2.5 | 2.3 | 5.4 | 6.8 | 6.2 | 6.7 | 5.5 | 4.9 | 3.2 | 3.0 | 2.7 | 2.5 |
日期 | 15 | 16 | 17 | 18 | 19 | 20 | 21 | 22 | 23 | 24 | 25 | 26 | 27 | 28 |
人数 | 2.4 | 2.9 | 3.2 | 2.8 | 2.9 | 2.3 | 3.0 | 2.9 | 3.1 | 3.0 | 3.1 | 3.1 | 3.1 | 3.0 |
根据表中数据回答下列问题:
(1)请将2019年2月前半月(1~14日)和后半月(15~28日)参观人数统计对比茎叶图填补完整,并通过茎叶图比较两组数据方差的大小(不要求计算出具体值,得出结论即可);
(2)将2019年2月参观人数数据用该天的对应日期作为样本编号,现从中抽样7天的样本数据.若抽取的样本编号是以4为公差的等差数列,且数列的第4项为15,求抽出的这7个样本数据的平均值;
(3)根据国博以往展览数据及调查统计信息可知,单日入馆参观人数为0~3(含3,单位:万人)时,参观者的体验满意度最佳,在从(2)中抽出的样本数据中随机抽取两天的数据,求这两天参观者的体验满意度均为最住的概率.