题目内容
【题目】已知,.
(1)求曲线在点处的切线方程;
(2)当时,若关于的方程存在两个正实数根,证明:且.
【答案】(1);(2)见解析
【解析】
(1)求出函数的导函数,再计算出,,即可求出切线方程;
(2)由存在两个正实数根,整理得方程存在两个正实数根.令利用导数研究其单调性、最值,因为有两个零点,即,得.
因为实数,是的两个根,所以,从而.令,,则,变形整理得.要证,则只需证,即只要证,
再构造函数即可证明.
(1)解:∵,
∴,,
∴曲线在点处的切线方程为.
(2)证明:由存在两个正实数根,
整理得方程存在两个正实数根.
由,知,
令,则,
当时,,在上单调递增;
当时,,在上单调递减.
所以.
因为有两个零点,即,得.
因为实数,是的两个根,
所以,从而.
令,,则,变形整理得.
要证,则只需证,即只要证,
结合对数函数的图象可知,只需要证,两点连线的斜率要比,两点连线的斜率小即可.
因为,所以只要证,整理得.
令,则,
所以在上单调递减,即,
所以成立,故成立.
练习册系列答案
相关题目