题目内容

已知
a
=(x,0)
b
=(1,y)
,且(
a
+
3
b
)⊥(
a
-
3
b
)

(1)求点P(x,y)的轨迹C的方程,且画出轨迹C的草图;
(2)若直线l:y=kx+m(k≠0)与上述曲线C交于不同的两点A、B,求实数k和m所满足的条件;
(3)在(2)的条件下,若另有定点D(0,-1),使|AD|=|BD|,试求实数m的取值范围.
(1)(
a
+
3
b
)⊥(
a
-
3
b
)
(
a
+
3
b
)•(
a
-
3
b
)=0

a
2
=3
b
2
⇒x2=3(y2+1)
∴P(x,y)的轨迹C的方程为
x2
3
-y2=1

其草图如右.(注:不画渐近线,不得分)
(2)
y=kx+m
x2-3y2-3=0
⇒(1-3k2)x2-6kmx-3m2-3=0
1-3k2≠0
△>0
3k2≠1(k≠0)
3k2m2+1
(*)
(3)设A(x1,y1)、B(x2,y2),A、B中点为H(x0,y0),
x0=
x1+x2
2
=
3km
1-3k2
y0=kx0+m=
m
1-3k2

由题意,有AB⊥DH⇒kAB•kDH=-1
k•
m
1-3k2
+1
3km
1-3k2
=-1

⇒3k2=4m+1,
代入(*),得
4m+1≠1
4m+1>0
4m+1<m2+1

-
1
4
<m<0
或m>4.
练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网