题目内容

如图,设椭圆
x2
a2
+
y2
b2
=1(a>b>0)长轴的右端点为A,短轴端点分别为B、C,另有抛物线y=x2+b.
(Ⅰ)若抛物线上存在点D,使四边形ABCD为菱形,求椭圆的方程;
(Ⅱ)若a=2,过点B作抛物线的切线,切点为P,直线PB与椭圆相交于另一点Q,求
|PQ|
|QB|
的取值范围.
(Ⅰ)由四边形ABCD是菱形,得D(a,a2+b),
a2+b=2b
a2+b2
=2b
,解得a=
3
3
b=
1
3

所以椭圆方程为3x2+9y2=1.
(Ⅱ)不妨设P(t,t2+b)(t≠0),
因为y'|x=t=2x|x=t=2t,
所以PQ的方程为y=2t(x-t)+t2+b,即y=2tx-t2+b.
又因为直线PQ过点B,所以-t2+b=-b,即b=
t2
2

所以PQ的方程为y=2tx-
t2
2

联立方程组
y=2tx-
t2
2
x2
4
+
4y2
t4
=1
,消去y,得(t2+64)x2-32tx=0.
所以点Q的横坐标为xQ=
32t
t2+64

所以
|PQ|
|QB|
=
xP-xQ
xQ-xB2
=
t2
32
+1

又t2=2b∈(0,4),所以
|PQ|
|QB|
的取值范围为(1,
9
8
)

练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网