题目内容
【题目】设函数().
(1)讨论函数的极值;
(2)若函数在区间上的最小值是4,求a的值.
【答案】(1)当时,函数在R上无极值;当时,的极小值为,无极大值.(2)
【解析】
(1)求得函数的导数,分类讨论即可求解函数的单调区间,得到答案.
(2)由(1)知,当时,函数在上单调递增,此时最小值不满足题意;当时,由(1)得是函数在上的极小值点,分类讨论,即可求解.
解:(1).
当时,,在R上单调递增;无极值
当时,,解得,
由,解得.
函数在上单调递减,函数在上单调递增,
的极小值为,无极大值
综上所述:当时,函数在R上无极值;
当时,的极小值为,无极大值.
(2)由(1)知,当时,函数在R上单调递增,
∴函数在上的最小值为,即,矛盾.
当时,由(1)得是函数在R上的极小值点.
①当即时,函数在上单调递增,
则函数的最小值为,即,符合条件.
②当即时,函数在上单调递减,
则函数的最小值为即,矛盾.
③当即时,函数在上单调递减,函数在上单调递增,
则函数的最小值为,即.
令(),则,
∴在上单调递减,
而,∴在上没有零点,
即当时,方程无解.
综上,实数a的值为.
【题目】中国人旅游有个特点:喜欢在旅游区购买当地的名优土特产,黄冈市有很多名优土特产,黄冈市的蕲春县就有闻名于世的“蕲春四宝”蕲竹、蕲艾、蕲蛇、蕲龟,由于医圣李时珍出生在蕲春县,很多人慕名而来,回家时顺带买点“蕲春四宝”,通过随机询问60名不同性别的游客在购买“蕲春四宝”时是否在来蕲春县之前就知道“蕲春四宝”,得到如下列联表:
男 | 女 | 总计 | |
事先知道“蕲春四宝” | 8 | n | q |
事先不知道“蕲春四宝” | m | 4 | 36 |
总计 | 40 | p | t |
附:
写出列联表中各字母代表的数字;
由以上列联表判断,能否在犯错误的概率不超过的前提下认为购买“蕲春四宝”和是否“事先知道蕲春四宝有关系”?
现从这60名游客中用分层抽样的方法抽取15名游客进行问卷调查,再从抽取的女游客中,随机选出2人给予小礼品,求有2名女游客是事先知道“蕲春四宝”的概率?
【题目】在暑假社会实践活动中,静静同学为了研究日最高气温对某家奶茶店的A品牌冷饮销量的影响,统计得到7月11日至15日该奶茶店A品牌冷饮的日销量y(杯)与当日最高气温x(℃)的对比表:
日期 | 7月11日 | 7月12日 | 7月13日 | 7月14日 | 7月15日 |
最高气温x(℃) | 31 | 33 | 32 | 34 | 35 |
销量y(杯) | 55 | 58 | 60 | 63 | 64 |
(1)由以上数据求出y关于x的线性回归方程, 若天气预报7月17日的最高气温为37℃,请预测当天该奶茶店A品牌冷饮的销量(取整数);
(2)从这5天中任选2天,求选出的2天最高气温都达到33℃以上(含33℃)的概率.参考公式及参考数据如下:
,
【题目】南充高中扎实推进阳光体育运动,积极引导学生走向操场,走进大自然,参加体育锻炼,每天上午第三节课后全校大课间活动时长35分钟.现为了了解学生的体育锻炼时间,采用简单随机抽样法抽取了100名学生,对其平均每日参加体育锻炼的时间(单位:分钟)进行调查,按平均每日体育锻炼时间分组统计如下表:
分组 | ||||||
男生人数 | 2 | 16 | 19 | 18 | 5 | 3 |
女生人数 | 3 | 20 | 10 | 2 | 1 | 1 |
若将平均每日参加体育锻炼的时间不低于120分钟的学生称为“锻炼达人”.
(1)将频率视为概率,估计我校7000名学生中“锻炼达人”有多少?
(2)从这100名学生的“锻炼达人”中按性别分层抽取5人参加某项体育活动.
①求男生和女生各抽取了多少人;
②若从这5人中随机抽取2人作为组长候选人,求抽取的2人中男生和女生各1人的概率.