题目内容
【题目】南充高中扎实推进阳光体育运动,积极引导学生走向操场,走进大自然,参加体育锻炼,每天上午第三节课后全校大课间活动时长35分钟.现为了了解学生的体育锻炼时间,采用简单随机抽样法抽取了100名学生,对其平均每日参加体育锻炼的时间(单位:分钟)进行调查,按平均每日体育锻炼时间分组统计如下表:
分组 | ||||||
男生人数 | 2 | 16 | 19 | 18 | 5 | 3 |
女生人数 | 3 | 20 | 10 | 2 | 1 | 1 |
若将平均每日参加体育锻炼的时间不低于120分钟的学生称为“锻炼达人”.
(1)将频率视为概率,估计我校7000名学生中“锻炼达人”有多少?
(2)从这100名学生的“锻炼达人”中按性别分层抽取5人参加某项体育活动.
①求男生和女生各抽取了多少人;
②若从这5人中随机抽取2人作为组长候选人,求抽取的2人中男生和女生各1人的概率.
【答案】(1)700人;(2) ①男生抽取4人,女生抽取1人.②
【解析】
(1)100名学生中“锻炼达人”的人数为10人,由此能求出7000名学生中“锻炼达人”的人数.
(2)①100名学生中的“锻炼达人”有10人,其中男生8人,女生2人.从10人中按性别分层抽取5人参加体育活动,能求出男生,女生各抽取多少人.
②抽取的5人中有4名男生和1名女生,四名男生一次编号为男1,男2,男3,男4,5人中随机抽取2人,利用列举法能求出抽取的2人中男生和女生各1人的概率.
(1)由表可知,100名学生中“锻炼达人”的人数为10人,将频率视为概率,我校7000名学生中“锻炼达人”的人数为(人)
(2)①由(1)知100名学生中的“锻炼达人”有10人,其中男生8人,女生2人.
从10人中按性别分层抽取5人参加体育活动,则男生抽取4人,女生抽取1人.
②抽取的5人中有4名男生和1名女生,四名男生一次编号为男1,男2,男3,男4,则5人中随机抽取2人的所有结果有:男1男2,男1男3,男1 男4,男1女,男2男3,男2男4,男2女,男3男4,男3女,男4女.共有10种结果,且每种结果发生的可能性相等.记“抽取的2人中男生和女生各1人”为事件A,则事件A包含的结果有男1女,男2女,男3女,男4女,共4个,故.
【题目】在年月日,某市物价部门对本市的家商场的某商品的一天销售量及其价格进行调查,家商场的售价元和销售量件之间的一组数据如表所示:
价格 | 9 | 9.5 | 10 | 10.5 | 11 |
销售量 | 11 | 10 | 8 | 6 | 5 |
根据公式计算得相关系数,其线性回归直线方程是:,则下列说法正确的有( )
参考:
A.有的把握认为变量具有线性相关关系
B.回归直线恒过定点
C.
D.当时,的估计值为
【题目】某同学用“五点法”画函数,在某一周期内的图象时,列表并填入了部分数据,如下表:
0 | |||||
x | |||||
0 | 2 | 0 | 0 |
(1)请将上表数据补充完整,并求函数的解析式;
(2)求函数的单调递增区间;
(3)求函数在区间上的最大值和最小值.
【题目】“互联网”是“智慧城市”的重要内士,市在智慧城市的建设中,为方便市民使用互联网,在主城区覆盖了免费.为了解免费在市的使用情况,调査机构借助网络进行了问卷调查,并从参与调査的网友中抽取了人进行抽样分析,得到如下列联表(单位:人):
经常使用免费WiFi | 偶尔或不用免费WiFi | 合计 | |
45岁及以下 | 70 | 30 | 100 |
45岁以上 | 60 | 40 | 100 |
合计 | 130 | 70 | 200 |
(1)根据以上数据,判断是否有的把握认为市使用免费的情况与年龄有关;
(2)将频率视为概率,现从该市岁以上的市民中用随机抽样的方法每次抽取人,共抽取次.记被抽取的人中“偶尔或不用免费”的人数为,若每次抽取的结果是相互独立的,求的分布列,数学期望和方差.
附:,其中.
0.15 | 0.10 | 0.05 | 0.025 | |
2.072 | 2.706 | 3.841 | 5.024 |