题目内容

【题目】函数f(x)=|x|﹣2|x+3|.
(1)解不等式f(x)≥2;
(2)若存在x∈R使不等式f(x)﹣|3t﹣2|≥0成立,求参数t的取值范围.

【答案】
(1)解:

∴﹣4≤x<﹣3或

∴不等式f(x)≥2的解集为


(2)解:∵f(x)max=3∴只需f(x)max﹣|3t﹣2|≥0,即3﹣|3t﹣2|≥0,

亦即|3t﹣2|≤3,解之得:

∴参数t的取值范围


【解析】去掉绝对值符号,化简函数的解析式为分段函数,(1)不等式转化为 ,求出解集即可.(2)求出f(x)max=3,转化不等式为f(x)max﹣|3t﹣2|≥0,然后求解参数t的取值范围.
【考点精析】本题主要考查了绝对值不等式的解法的相关知识点,需要掌握含绝对值不等式的解法:定义法、平方法、同解变形法,其同解定理有;规律:关键是去掉绝对值的符号才能正确解答此题.

练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网