题目内容
给出集合A={-2,-1,
,
,
,1,2,3}
。已知a∈A,使得幂函数
为奇函数,指数函数
在区间(0,+∞)上为增函数。
(1)试写出所有符合条件的a,说
明理由;
(2)判断f(x)在(0,+∞)的单调性,并证明;
(3)解方程:f[g(x)]=g[f
(x)]。
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823150453781229.gif)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823150453781227.gif)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823150453812210.gif)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/2014082315045382872.gif)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823150453843333.gif)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823150453875432.gif)
(1)试写出所有符合条件的a,说
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/2014082315045389065.gif)
(2)判断f(x)在(0,+∞)的单调性,并证明;
(3)解方程:f[g(x)]=g[f
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/2014082315045392165.gif)
(1)a=3
(2)f(x)=x3在(0,+∞)上为增函数
(3)x1=0,x2=
,x3=![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823150453953224.gif)
(2)f(x)=x3在(0,+∞)上为增函数
(3)x1=0,x2=
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823150453937217.gif)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823150453953224.gif)
解:(1)指数函数
在区间(0,+∞)上为增函数,∴a>1,∴a只可能为2或3。而当a=2时,幂函数f(x)=x2为偶函数,只有当a=3时,幂函数f(x)=x3为奇函数
故a=3…3分
(2)f(x)=x3在(0,+∞)上为增函数。
证明:在(0,+∞)上任取x1,x2,x1<x2,
f(x1)-f(x2)=
=
,
∵x1<
x2,∴x1-x2<0,
>0,∴f(x1)-f(x2)>0,∴f(x1)>f(x2)。
∴f(x)=x3在(0,+∞)上为增函数。 …8分
(3)
....10分
根据指数函数的性质,得3x=x3,∴x1=0,x2=
,x3=
。 …12分
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823150453875432.gif)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/2014082315045389065.gif)
(2)f(x)=x3在(0,+∞)上为增函数。
证明:在(0,+∞)上任取x1,x2,x1<x2,
f(x1)-f(x2)=
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823150454077656.gif)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823150454109735.gif)
∵x1<
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/2014082315045414072.gif)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823150454155584.gif)
∴f(x)=x3在(0,+∞)上为增函数。 …8分
(3)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823150454171934.gif)
根据指数函数的性质,得3x=x3,∴x1=0,x2=
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823150453937217.gif)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823150453953224.gif)
![](http://thumb.zyjl.cn/images/loading.gif)
练习册系列答案
相关题目