题目内容
【题目】过椭圆: 上一点向轴作垂线,垂足为右焦点, 、分别为椭圆的左顶点和上顶点,且, .
(Ⅰ)求椭圆的方程;
(Ⅱ)若动直线与椭圆交于、两点,且以为直径的圆恒过坐标原点.问是否存在一个定圆与动直线总相切.若存在,求出该定圆的方程;若不存在,请说明理由.
【答案】(1)(2)存在
【解析】试题分析:(1)由得,解得, ,,结合,即可求椭圆的方程;(2)先求得直线的斜率不存在及斜率为零时圆的方程,由此可得两圆所过公共点为原点,当直线的斜率存在且不为零时,设直线的方程为代入椭圆方程消掉得的二次方程,设,由韦达定理、向量数量积可得的表达式,再根据线圆相切可得的关系式,代入上述表达式可求得,由此可得结论.
试题解析:(1)由题意得,所以, .由得,解得, ,
由,得, ,椭圆的方程为.
(2)假设存在这样的圆.设, .
由已知,以为直径的圆恒过原点,即,所以.
当直线垂直于轴时, , ,所以,又,解得,
不妨设, 或, ,即直线的方程为或,此时原点到直线的距离为.
当直线的斜率存在时,可设直线的方程为,解消去得方程:
,因为直线与椭圆交于, 两点,所以方程的判别式
,即,且, .
由,得 ,
所以 ,整理得(满足).
所以原点到直线的距离.综上所述,原点到直线的距离为定值,即存在定圆总与直线相切.
练习册系列答案
相关题目