题目内容
【题目】上周某校高三年级学生参加了数学测试,年部组织任课教师对这次考试进行成绩分析.现从中抽取80名学生的数学成绩(均为整数)的频率分布直方图如图所示.
(Ⅰ)估计这次月考数学成绩的平均分和众数;
(Ⅱ)假设抽出学生的数学成绩在段各不相同,且都超过94分.若将频率视为概率,现用简单随机抽样的方法,从95,96,97,98,99,100这6个数字中任意抽取2个数,有放回地抽取3次,记这3次抽取中恰好有两名学生的数学成绩的次数为,求的分布列和期望.
【答案】(1)平均分,众数分;(2)分布列见解析,期望.
【解析】试题分析:(1)利用中值估算抽样学生的平均分;(2)求出两个数恰好是两个学生的数学成绩的概率,确定随机变量的可能取值,求出相应的概率,可求的分布列及数学期望.
试题解析:(1)平均分 分.
众数的估计值是75分.
(2)在段的人数(人),
设每次抽取两个数恰好是两名学生的成绩的概率为,则,
显然, 的可能取值为0,1,2,3. ,
的分布列为:
0 | 1 | 2 | 3 | |
,
练习册系列答案
相关题目
【题目】根据以往的经验,某工程施工期间的降水量(单位:)对工期的影响如下表:
降水量 | ||||
工期延误天数 | 0 | 2 | 6 | 10 |
历年气象资料表明,该工程施工期间降水量小于300,700,900的概率分别为0.3,0.7,0.9,求:
(1)工期延误天数的均值与方差;
(2)在降水量至少是300的条件下,工期延误不超过6天的概率.